Quantitative multiple pointwise convergence and effective multiple correlations

نویسندگان

چکیده

We show that effective 2ℓ-multiple correlations imply quantitative ℓ-multiple pointwise ergodic theorems. The result has a wide class of applications which include subgroup actions on homogeneous spaces, nilmanifold automorphisms, subshifts finite type and Young towers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Convergence of Some Multiple Ergodic Averages

We show that for every ergodic system (X, μ,T1, . . . ,Td) with commuting transformations, the average 1 Nd+1 ∑ 0≤n1,...,nd≤N−1 ∑ 0≤n≤N−1 f1(T n 1 d ∏ j=1 T n j j x) f2(T n 2 d ∏ j=1 T n j j x) · · · fd(T n d d ∏ j=1 T n j j x). converges for μ-a.e. x ∈ X as N → ∞. If X is distal, we prove that the average 1 N N ∑ i=0 f1(T n 1 x) f2(T n 2 x) · · · fd(T n d x) converges for μ-a.e. x ∈ X as N → ∞...

متن کامل

Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology.

Various magnetic resonance (MR) techniques are used to study the pathological evolution of demyelinating diseases, such as multiple sclerosis (MS). However, few studies have validated MR derived measurements with histopathology. Here, we determine the correlation of myelin water imaging, an MR measure of myelin content, with quantitative histopathologic measures of myelin density. The multi-com...

متن کامل

POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS

We study the space of all continuous fuzzy-valued functions  from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$  endowed with the pointwise convergence topology.   Our results generalize the classical ones for  continuous real-valued functions.   The field of applications of this approach seems to be large, since the classical case  allows many known devices to be fi...

متن کامل

Noncentral Convergence of Multiple

Fix ν > 0, denote by G(ν/2) a Gamma random variable with parameter ν/2 and let n ≥ 2 be a fixed even integer. Consider a sequence {F k } k≥1 of square integrable random variables belonging to the nth Wiener chaos of a given Gaussian process and with variance converging to 2ν. As k → ∞, we prove that F k converges in distribution to 2G(ν/2) − ν if and only if E(F 4 k) − 12E(F 3 k) → 12ν 2 − 48ν.

متن کامل

Pointwise Convergence of Trigonometric Series

We establish two results in the pointwise convergence problem of a trigonometric series [An] £ cne inl with lim Hm £ I bTck | = 0 |n|< -x. * Jn-»oo \k\-n for some nonnegative integer m. These results not only generalize Hardy's theorem, the Jordan test theorem and Fatou's theorem, but also complement the results on pointwise convergence of those Fourier series associated with known 1}-convergen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2021

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2021.02.057